Sensitivity and out-of-sample error in continuous time data assimilation
نویسندگان
چکیده
منابع مشابه
Sensitivity And Out-Of-Sample Error in Continuous Time Data Assimilation
Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time—tracking the observations is not possible without the trajectory deviating from the proposed...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Model error estimation in ensemble data assimilation
A new methodology is proposed to estimate and account for systematic model error in linear filtering as well as in nonlinear ensemble based filtering. Our results extend the work of Dee and Todling (2000) on constant bias errors to time-varying model errors. In contrast to existing methodologies, the new filter can also deal with the case where no dynamical model for the systematic error is ava...
متن کاملPermutation Complexity Bound on Out-Sample Error
Assume a standard setting with data D = {(xi, yi)}i=1, where (xi, yi) are sampled iid from the joint distribution p(x, y) on Rd×{±1}. Let H = {h : R 7→ {±1}} be a learning model which produces a hypothesis g ∈ H when given D (we use g for the hypothesis returned by the learning algorithm and h for a generic hypothesis in H). We assume the 0-1 loss, so the in-sample error is ein(h) = 1 2n ∑n i=1...
متن کاملContinuous Data Assimilation with Stochastically Noisy Data
We analyze the performance of a data-assimilation algorithm based on a linear feedback control when used with observational data that contains measurement errors. Our model problem consists of dynamics governed by the two-dimension incompressible Navier–Stokes equations, observational measurements given by finite volume elements or nodal points of the velocity field and measurement errors which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly Journal of the Royal Meteorological Society
سال: 2011
ISSN: 0035-9009
DOI: 10.1002/qj.940